limn→∞infEn∪limn→∞infFn⊂limn→∞(En∪Fn)
Solución:
Sea x∈limn→∞infEn∪limn→∞infFn, es decir, x∈limn→∞infEn ó x∈limn→∞infFn.
Luego, x∈∪∞n=1∩k≥nEk ó x∈∪∞n=1∩k≥nFk. Como Ek,Fk⊂(Ek∪Fk), entonces ∪∞n=1∩k≥nEk⊂∪∞n=1∩k≥n(Ek∪Fk) y ∪∞n=1∩k≥nFk⊂∪∞n=1∩k≥n(Ek∪Fk).
En cualquiera de los casos, x∈∪∞n=1∩k≥n(Ek∪Fk)=limn→∞(En∪Fn).
Luego, limn→∞infEn∪limn→∞infFn⊂limn→∞(En∪Fn).
No hay comentarios:
Publicar un comentario